This is a review submitted to Mathematical Reviews/MathSciNet.

Reviewer Name: Konstantopoulos, Takis

Mathematical Reviews/MathSciNet Reviewer Number: 68397

Address:

Department of Mathematics Uppsala University PO Box 480 SE-75106 Uppsala SWEDEN takiskonst@gmail.com

Author: Chistyakov, G. P.

Title: On probability measures with unbounded angular ratio.

MR Number: MR3079139

Primary classification:

Secondary classification(s):

Review text:

The paper is motivated by a problem in dynamical systems: for an ergodic transformation on a probability space (X, \mathcal{B}, m) and a probability measure μ on the integers \mathbb{Z} , define the random measure $\tilde{\mu}(x, B) := \sum_{k \in \mathbb{Z}} \mu(k) \mathbf{1}_{\tau^k x \in B}$, $B \in \mathcal{B}$. (I am using a slightly different notation from that of the paper in order to make my point.) Consider then an *m*-integrable random variable f: $X \to \mathbb{R}$ and let $\tilde{\mu}^n f(x) := \int_X f(y) \tilde{\mu}^n(x, dy)$, where $\tilde{\mu}^n(x, \cdot) := \tilde{\mu}^{n-1}(x, \cdot) * \tilde{\mu}(x, \cdot)$ (where * denotes convolution). The problem is the a.e. convergence (or failure of it) of $\tilde{\mu}^n f$, as $n \to \infty$. It is known that boundedness/unboundedness of the angular ratio of μ plays an important role in this problem. A strictly aperiodic μ has bounded angular ratio iff sup $|\hat{\mu}(\lambda) - 1|/(1 - |\hat{\mu}(\lambda)|) < \infty$, where $\hat{\mu}(\lambda) := \sum_k \lambda^k \mu(k), \lambda \in \mathbb{C}$, and where the sup is taken over the unit disk except the point $\lambda = 1$. The author deals with properties of the angular ratio of μ in a more general setup, looking at random variables X and the associated function

$$R_{\varphi}(t,\alpha) := |\operatorname{Im} \varphi(t)| / (1 - \operatorname{Re} \varphi(t))^{\alpha}, \quad t \in \mathbb{R},$$

for $1/2 \leq \alpha \leq 1$, where $\varphi(t) = \mathbb{E}e^{itX}$ is the characteristic function of X. Bellow, Jones and Rosenblatt proved that if $\mathbb{E}|X| < \infty$ but $\mathbb{E}X \neq 0$ then $\lim_{t\to 0} R_{\varphi}(t,1) = \infty$ and constructed a random variable X with $\mathbb{E}X = 0$ for which the same thing holds. Ostrovskii proved that there exist random variables X with $\mathbb{E}|X|^{1+\epsilon} < \infty$ for some small $\epsilon > 0$ and $\mathbb{E}X = 0$ for which $\limsup_{t\to 0} R_{\varphi}(t,1) = \infty$ and conjectured that it is possible to have $\liminf_{t\to 0} R_{\varphi}(t,1) < \infty$. The paper deals with these problems by constructing examples and by giving necessary and sufficient conditions for $\lim_{t\to 0} R_{\varphi}(t, \alpha) = \infty$, formulated in terms of the distribution function of X and truncated moments of it.